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Abstract: RapunydnnpdlymdsgoadunethoxyhﬁonuCﬁh&epmofLewumds(BF;EqO SnCly exc.) to give a
highly stabilized casbocation. This intermediate gives a tetraene or is trapped by nucleophiles to give functionalized trienes. Several
examples of the substitstion reaction and elaboration of the reaction scheme are reported.

Rapamycin (1), a 31-membered macrocyclic lactone possessing potent immunosuppressive activity, is
currently undergoing clinical trials for reatment of transplantation rejection.! Investigations into the behavior
of rapamycin under basic conditions showed that rapamycin is chemically labile to hydroxide, carbonate,
pyridines, and aliphatic amines in protic and aprotic solvents.2 An earlier publication showed that
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rapamycin is susceptible to a Lewis acid catalyzed retroaldol reaction.? Independent examination in our
laboratories of the action of strong Lewis acids on the structural -integrity of rapamycin uncovered the
potential for Lewis acids to behave as catalysts in the nondestructive functionalization of rapamycin.
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Facile and efficient substitution of the C-7 methoxy functionality takes place in the presence of various Lewis
acids and appropriate nucleophiles. Thus, treatment of rapamycin with HOCH2CH20H in tetrahydrofuran in
the presence of tin(TV) chloride resulted in formation of products 2a and 3a with reasonable yields (30-40%
of each after HPLC).4

The proposed mechanism of the reaction is illustrated in Scheme 1 and includes attack on a Lewis
acid by the methoxy at C-7 with subsequent formation of a reactive carbocation. Reaction of the triene-
stabilized carbenium ion with nucleophiles may occur from either end of the triene system giving C-1 or C-7
substitution products. Alternatively, in the absence of a strong nucleophile, elimination occurs to give a
mixture of isomeric tetracnes 4 and 5.

Scheme 1.
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To avoid the well-known retroaldol opening of the rapamycin ring,? carboxylate B-elimination, 2 and
benzilic acid rearrangement 2 these conditions must be met: 1) the reaction progress must be very carefully
monitored (at least for the synthesis of tetraenes 4 and §), 2) preliminary dissolution of the Lewis acid in a
coordinating solvent is highly desirable to regulate the reactivity of the acid, and 3) the optimal quantity of the
acid used may range from 10 mol % to 500 mol % depending on the nature of pucleophile and purity of the
reagents. Typically, 1 eq of rapamycin is allowed to react in THF at 0° C with 5-20 eq of the nucleophile in

the presence of 50-75 mol % of a Lewis acid for 1-12 hours. Ethers 2b,3b (from glycerol) and 2¢,3¢ (from
triethyleneglycol monomethyl ether) were prepared in yields of 30-40 % for each isomer.
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The approximate ratio of diastereomers in any given regioisomer was determined by 1H NMR to be ~ 60:40.
No assignment to any particular absolute configuration has been made. When nonpolar solvents were used,
lower concentrations of acid were necessary to avoid decomposition. Using 1-5 mol % of Zn(OTf); in
dichloromethane in the presence of 1,2-ethanedithiol, 6 and 7 were isolated in 10-15% yield.

The climination pathway was confirmed by carrying out the reaction in the absence of nucleophile.
For the purpose of generalization, BF3-etherate was used as the Lewis acid. The products 4 and §, isolated in
25-30 % yield, were a mixture of both possible regioisomers (from 1,2- and 1,8-elimination). The tetracne
products were unstable and decomposition occurred before full analytical workup was possible.5 To obtain
added evidence that the tetracne products were formed, the mixture was subjected to the action of a powerful
dienophile, N-methyltriazolinedione (See Scheme 2).

Scheme 2.

The reaction was initially carried out using one equivalent of N-methyltriazolinedione. A single
addition product was obtained in which N-methyltriazolinedione added across the 2- and 7-positions of the
tetracne 5 to give a diazacyclooctadiene ring 8 in what is formally a [6+2]-cycloaddition.5 No products were
obtained in which the dienophile added in a [4+2] fashion (i.e. 9 and 10) and no products were obtained from
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cycloadditions to tetraene 4.7 To confirm this rather unusual result, the reaction was repeated using 2
equivalents of N-methyltriazolinedione in an effort to react diazacyclooctadiene 8 with a second equivalent
of dienophile. Again, a single product was obtained in which the initially formed diazacyclooctadiene 8
reacts with the dienophile to give the tetra-azabicyclio{4.2.2]decaene 11.%

The triene substitution products as well as the Diels-Alder additien products were tested in vitro for
their ability to inhibit T cell-proliferation. Although all compeunds synthesized in this paper were active in
the IL-1 induced proliferation assay, they were all significantly less active than rapamycin. The perturbation
of the triene region has been shown to-profoundly effect the immunosuppressive activity implicating this
region in rapamycin - effector binding protéin interactions.” :

With the discovery of the Lewis acid catalyzed substitution and elimination reactions, the behavior of
rapamycin under acidic conditions is being elucidated. In addition, new cycloaddition reactions involving the
reactive and unstable tetraecne and N-methyltriazolinedione were reported. The very interesting chemistry
associated with this complex natural product continues to be explored.
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